Python实现贝叶斯优化器(Bayes_opt)优化LightGBM回归模型(LGBMRegressor算法)项目实战
发布时间:2024-06-10 05:17 点击量:
贝叶斯优化是一种优化算法,用于寻找一个黑箱函数的最大值或最小值。在机器学习领域,贝叶斯优化可以用于对模型的超参数进行优化。
在lightgbm模型中,特征提取是一个重要的步骤。贝叶斯优化可以用来优化特征提取的参数,例如特征数、特征采样率等。
下面是一个使用贝叶斯优化对lightgbm特征进行提取的例子:
```python
import lightgbm as lgb
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from bayes_opt import BayesianOptimization
# 加载数据集
data=load_breast_cancer()
X_train, X_test, y_train, y_test=train_test_split(data.data, data.target, test_size=0.2, random_state=42)
# 构造lightgbm模型,用于特征提取
def lgb_cv(num_leaves, feature_fraction, bagging_fraction, max_depth, min_split_gain, min_child_weight):
params={'objective': 'binary',
'metric': 'auc',
'num_leaves': int(num_leaves),
'feature_fraction': max(min(feature_fraction, 1), 0),
'bagging_fraction': max(min(bagging_fraction, 1), 0),
'max_depth': int(max_depth),
'min_split_gain': min_split_gain,
'min_child_weight': min_child_weight,
'verbose': -1,
'seed': 42}
cv_result=lgb.cv(params, lgb.Dataset(X_train, y_train), num_boost_round=1000, nfold=5, stratified=False, shuffle=True, metrics=['auc'], early_stopping_rounds=50)
return cv_result['auc-mean'][-1]
# 定义贝叶斯优化的参数空间
lgbBO=BayesianOptimization(lgb_cv, {'num_leaves': (24, 45),
'feature_fraction': (0.1, 0.9),
'bagging_fraction': (0.8, 1),
'max_depth': (5, 15),
'min_split_gain': (0.001, 0.1),
'min_child_weight': (5, 50)})
# 进行贝叶斯优化
lgbBO.maximize(init_points=5, n_iter=25, acq='ei')
# 根据优化的结果提取特征
params=lgbBO.max['params']
params['num_leaves']=int(params['num_leaves'])
params['max_depth']=int(params['max_depth'])
params['verbose']=-1
params['objective']='binary'
params['metric']='auc'
params['boosting_type']='gbdt'
params['seed']=42
gbm=lgb.train(params, lgb.Dataset(X_train, y_train), num_boost_round=1000, verbose_eval=False)
# 提取特征的重要性
feature_importance=gbm.feature_importance()
feature_names=data.feature_names
# 打印特征的重要性
for feature_name, importance in zip(feature_names, feature_importance):
print(feature_name, ':', importance)
```
上面的代码中,我们使用了BayesianOptimization库实现了贝叶斯优化。定义了一个lgb_cv函数用于训练lightgbm模型,并返回最终的AUC值。然后定义了一个参数空间,包括num_leaves、feature_fraction、bagging_fraction、max_depth、min_split_gain和min_child_weight等参数。接着,我们使用maximize函数进行贝叶斯优化,初始化5个点,迭代25次,使用ei作为acq函数。
最后,我们根据优化的结果提取特征,并打印出每个特征的重要性。